
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 48:1415–1428
Published online 16 May 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.987

An arbitrary Lagrangian Eulerian (ALE) formulation for free
surface �ows using the characteristic-based split

(CBS) scheme
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SUMMARY

An arbitrary Lagrangian Eulerian (ALE) method for non-breaking free surface �ow problems is
presented. The characteristic-based split (CBS) scheme has been employed to solve the ALE equa-
tions. A simple mesh smoothing procedure based on coordinate averaging (Laplacian smoothing) is
employed in the calculations. The mesh velocity is calculated at each time step and incorporated as part
of the scheme. Results presented show an excellent agreement with the available experimental data.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many problems of practical importance a free surface will occur in the �uid (always
liquid). In general the position of such a free surface is not known and the main problem is
that of determining it. Typical problems of free surfaces include �ow over and under water
control structures, �ow around ships, to industrial processes such as �lling of moulds. All
these situations deal with a �uid which is incompressible.
There are several ways of dealing with free surface �ows. We broadly classify them

into three categories. They are (i) pure Lagrangian methods (ii) Eulerian methods and (iii)
arbitrary Lagrangian Eulerian (ALE) methods.
In Lagrangian methods we need to employ the equations for the �uid particles whose

position is changing continuously in time [1–4]. Such Lagrangian methods almost always are
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used in the study of solid mechanics but are relatively seldom applied in �uid dynamics. This
is due to either that in most unsteady �uid dynamics problems very large deformation occurs
or unsteady state is not important. There is an immediate advantage of Lagrangian formulation
in the fact that convective acceleration is non-existent and the problem is immediately self-
adjoint. Further, for problems in which free surface occurs it allows the free surface to be
continuously updated and maintained during the �uid motion.
In Eulerian methods for which the boundaries of the �uid motion are �xed in position and

so indeed are any computational meshes. For free surface problems an immediate di�culty
arises as the position of the free surface is not known a priori. The numerical method will
therefore have to include an additional algorithm to trace the free surface positions [5–15].
This is normally carried out by solving a convection equation for free surface height on the
free boundary.
With both Lagrangian and Eulerian methods certain di�culties and advantages occur and

on occasion it is possible to provide a better alternative, which attempts to secure the best
features of both Lagrangian and Eulerian description by combining these. Such methods are
known as ALE methods [16–29].
The topic of interest in this paper is the ALE method for non-breaking free surface �ow

problems. The ALE description of a �uid is discussed in detail by many (see Reference [28]
for a detailed mathematical description). However, implementation of ALE method for free
surface �ow calculations follows several di�erent approaches [16–29]. The major di�erence
between existing �nite-element-based papers is the calculation of mesh velocity. Many of
these papers mention very little about the mesh velocity and its integration with the main
algorithm. Thus, in this paper we have attempted to provide a step-by-step procedure which
is easy to implement.
The ALE method developed in this paper is based on estimating a grid velocity at each

time interval on nodes from a mesh smoothing algorithm. The mesh smoothing algorithm
employed is based on determining the position of a node by simple averaging of the coor-
dinates of the surrounding nodes. Such a smoothing is applied during each time interval. It
should be noted, however, that any other mesh smoothing or mesh regeneration procedure
can be integrated as part of the proposed algorithm.
In Section 2 we provide equations of ALE description of a �uid followed by in Section 3

a brief discussion of the characteristic-based split (CBS) scheme. Section 4 gives a brief
implementation procedure of the ALE approach for free surface �ow problems and Section 5
gives two simple examples, to demonstrate the use of the proposed ALE approach and the
CBS scheme. Finally, Section 6 draws some conclusions.

2. ARBITRARY LAGRANGIAN EULERIAN (ALE) FORMULATION

The ALE settings for incompressible �ows is written as

continuity

@ui
@xi
=0 (1)
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and momentum

@ui
@t
+ (ui − ugi) @ui@xi = − 1

�
@p
@xi

+
1
�
@�ij
@xj

− gi (2)

where � is the density, t is the time, ui are the velocity components, p is the pressure and gi
is the acceleration due to gravity. The subscript g in the above equation indicates the grid
velocity. If the explicit form of solution is preferred then an arti�cial compressibility term is
added to Equation (1) and the continuity equation becomes

1
�2
@p
@t
+ �

@ui
@xi
=0 (3)

here � is an arti�cial compressible wave speed.
It is easy to observe that Equation (2) becomes a Lagrangian equation if grid velocity ugi

is equal to �uid velocity ui and it becomes an Eulerian equation if ugi = 0. Thus, this
formulation may be considered to be one which encompasses all the three methodologies of
free surface �ow mentioned previously. The problem de�nition will be complete with the
speci�cation of appropriate boundary conditions. In this study, pressure values are assumed
to be zero on the free surface and all walls are assumed to be slip walls.

3. ALE IMPLEMENTATION

The implementation of ALE method varies depending on the problem of interest. The ma-
jor point which deserves attention is allotting appropriate nodal mesh velocities. In simple
problems it may be possible to impose a grid velocity on the nodes a priori. However,
generalizing such an approach is not possible. It is therefore necessary to have a mesh
smoothing=regeneration algorithm as part of the solution procedure.
There are several mesh smoothing procedures available for triangular and tetrahedral ele-

ments. One such procedure was introduced by Giuliani [30] in which a function constructed
from measures of distortion and squeeze is minimized. This procedure works well for domains
with �xed boundaries. Several improvements have been later carried out by many authors [31].
A variable smoothing method based on a combination of Laplacian and Winslow’s method
was introduced by Hermansson and Hansbo [32], which preserves the element stretching. The
objectives of many of these smoothing procedures is to keep the number of elements the same
through out the calculation. It is therefore obvious that these algorithms are limited to low
amplitude free surface waves. For larger amplitudes it may be necessary to use remeshing of
the whole or part of the domain.
We have also used a simple smoothing procedure widely employed in mesh generation

algorithms to improve element quality. Here, position of a node inside a domain is recalculated
as an average of the coordinates of the surrounding nodes. Depending on the requirement this
smoothing procedure can be employed several times within a single time step.
It is standard practice to split an ALE algorithm into three phases. They are (1) Lagrangian

solution (2) Mesh rezoning action and (3) Eulerian calculation [2]. However, in practice such
a distinction may not be necessary. We do not divide the ALE method into three stages. The
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proposed algorithm has the following steps within each time interval:

(1) apply mesh smoothing
(2) calculate mesh velocities
(3) estimate the nodal variables by solving the governing equations

(velocities and pressure)
(4) move the nodes to new positions using speeds calculated at step 3
(5) go to next time step

The relations used for the mesh velocities at step 2 and nodal positions at step 4 are given
in the following section.

4. SOLUTION PROCEDURE

The three steps of the CBS procedure can be summarized as [33–38]
Step 1: Intermediate momentum

�ũi= ũi − uni =�t
[
−(ui − ugi) @ui@xi +

1
�
@�ij
@xj

− gi
]n

(4)

where uni = ui(tn);�t= t
n+1 − tn and ˜ indicates an intermediate quantity.

Step 2: Pressure

(
1
�2

)n
�p=

(
1
�2

)n
(pn+1 − pn)

=−�t
[
�
@uni
@xi

+ �1�
@�u∗

i

@xi
−�t�1

(
@2pn

@xi@xi
+ �2

@2�p
@xi@xi

)]
(5)

Selection of arti�cial compressible wave speed � for an explicit scheme is discussed in
Reference [33].
Step 3: Momentum correction

�ui= un+1i − uni =�u∗
i − 1

�
�t
@p
@xi

n+�2

(6)

The standard Galerkin approximation can now be applied to all the three steps. For full
details refer to References [33–38].
For a fully explicit form 0:5¿�1¿1:0 and �2 = 0 and � value is �nite. However, for a

semi-implicit form 0:5¿�1¿1:0 and 0:5¿�2¿1:0 and � is in�nity and thus left-hand side
of Equation (5) is equal to zero. In a semi-implicit form, therefore, step 2 is an implicit
calculation step for pressure.
If one prefers to use the explicit scheme, a dual time stepping procedure is helpful to carry

out calculations in real time. In such a procedure a real time step is added to step 3 of the
scheme [33].
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The Lagrangian movement of the coordinates are facilitated using the following relation
after every real time step [2]:

xn+1i = xni +
1
2 �t(u

n+1
i + uni ) (7)

The grid velocity on a node can obviously be calculated from the above equation

un+1gi =
2
�t
(xn+1i − xni )− ungi (8)

Here �t is the real time step. The steps in an ALE procedure using the CBS scheme is
summarized as

Do i = 1, number of time steps
Step1: Mesh smoothing using nodal averaging (Section 3)
Step2: Mesh velocity calculation (Equation (8))
Step3: Intermediate velocity (Equation (4))
Step4: Pressure calculation (Equation (5))
Step5: Velocity correction (Equation (6))
Step6: Nodal displacement (Equation (7))

enddo !i

If a pure Lagrangian calculation is preferred the convection and stabilizing terms in
Equation (4) are switched o� to save computing time.

5. EXAMPLES

5.1. Model broken dam

The �rst example problem considered is a standard benchmark problem of model broken dam
as shown in Figure 1. This problem is solved as a pure Lagrangian problem with ui= ugi.
Here, no mesh smoothing is employed.

Free surfaceg

Initial fluid level

Gate

Slip walls

H

W

L

W

Figure 1. Broken dam problem. Problem de�nition and schematic of the free surface.
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As seen in Figure 1 the problem consists of two slip walls on which slip boundary conditions
are applied (normal velocity zero). The initial �uid position is as shown in Figure 1 (left)
with velocities at all nodes equal to zero. The dimensions of the dam are: H =7 and W =3:5.
The gravity was assumed to act with a magnitude equal to unity. The viscosity was assumed
to be 10−2. The initial conditions are given as standard static conditions with zero values for
velocity components and hydrostatic value for pressure.
At t=0, the gate was opened and the �uid from the tank was allowed to �ow freely. The

quantity of interest is the extreme horizontal free surface position L as shown in Figure 1
(right). The unstructured mesh used consists of 339 nodes and 604 elements. The semi-implicit
form of the CBS scheme was employed to solve this problem.
Figures 2 and 3 give the meshes and contours of variables at time levels 2.0 and 5.0. As

seen the results are generally smooth all over the domain although the mesh is very stretched
at t=5:0. The pressure contours are free of oscillations, which shows the excellent pressure
stabilization properties of the CBS scheme.
Figure 4 shows the comparison of extreme horizontal position of the free surface with the

experimental data. As seen the numerical results are in excellent agreement with the

(a) (b)

(c) (d)

Figure 2. Broken dam problem. Mesh and contours after t=2:0: (a) mesh; (b) u1 velocity contours;
(c) u2 velocity contours; and (d) pressure contours.
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(a) (b)

(d)(c)

Figure 3. Broken dam problem. Mesh and contours after t=5:0: (a) mesh; (b) u1 velocity contours;
(c) u2 velocity contours; and (d) pressure contours.
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Figure 4. Broken dam problem. Comparison of numerical results with experimental data [5].

reported experimental data. The non-dimensional time in the horizontal coordinate is calculated
as t

√
2g=W.

In Figure 5 we show the area error with respect to time. The area error is calculated as
the di�erence between the initial total area and the total area value with respect to time. The
initial area is 24.5. Only a very small change in the total area with respect to time is noted.
This error is especially pronounced close to a time of 3. The maximum percentage of error
is less than 0.3%.

5.2. Solitary wave propagation

We now consider an example of a solitary wave propagation between two solid vertical
walls. In this problem we employ the described ALE procedure. Figure 6 shows the problem
de�nition. It consists of a liquid with free surface constrained within three walls, two vertical
walls and one bottom horizontal wall. The total horizontal length of the domain is 16d and
d=1. The gravity direction is downward vertical with g=9:81. The viscosity of the �uid was
assumed to be 0.01. The time step employed was 0.025 which is very close to the stability
limit of the scheme. A time step value close to the stability limit is advisable to obtain a
stable pressure solution.
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Figure 5. Area error distribution with respect to time.
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Figure 6. Solitary wave propagation. Problem de�nition.

The walls of the problem are assumed to be slip walls and initial conditions are calculated
based on the work presented by Laitone [39] for an in�nite domain. The relationships for
total wave height, velocity components and pressure are given as

h = d+H sech2
[√

3H
4d3

(x1 − ct)
]

(9)

u1 =
√
gd
H
d
sech2

[√
3H
4d3

(x1 − ct)
]

(10)

u2 =
√
3gd

(
H
d

)3=2 (x2
d

)
sech2

[√
3H
4d3

(x1 − ct)
]
tanh

[√
3H
4d3

(x1 − ct)
]

(11)
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and

p=�g(h− x2) (12)

In the above equation c is given as

c√
gd
=1+

1
2
H
d

− 3
20

(
H
d

)2
+O

(
H
d

)3
(13)

The initial solution and geometry are generated by substituting t=0 into Equations
(9)–(11). The mesh smoothing procedure is carried out by recalculating the coordinates of
the nodes as discussed in Sections 3 and 4.
In Figures 7 and 8 we show the meshes and the velocity vectors at various time levels

for H=d=0:3. The total number of elements and nodes are unchanged during the calculation,
they are 3838 and 2092. The semi-implicit form of the CBS scheme was again used in the
calculations. As seen the wave reaches a maximum height at the right wall around a time,

(a)

(b)

(c)

(d)

(e)

Figure 7. Solitary wave propagation. Meshes at various time levels: (a) t=0:0; (b) t=2:3;
(c) t=4:6; (d) t=6:9; and (e) t=9:2.
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(a)

(b)

(c)

(d)

(e)

Figure 8. Solitary wave propagation. Velocity vector distribution at various time levels: (a) t=0:0;
(b) t=2:3; (c) t=4:6; (d) t=6:9; and (e) t=9:2.

(a)

(b)

(c)

Figure 9. Solitary wave propagation. u1, u2 and p distribution at t=2:3: (a) u1; (b) u2; and (c) p.
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(a)

(b)

(c)

Figure 10. Solitary wave propagation. u1, u2 and p distribution at t=4:6: (a) u1; (b) u2; and (c) p.
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Figure 11. Wave heights with respect to time on the right and left side walls:
(a) right wall; and (b) left wall.

t=2:3 and returning to the initial position at around t=4:6. This values are in very close
agreement with other reported numerical results [23].
Figures 9 and 10 show the contours of u1 and u2 velocity components and pressure

at t=2:3 and 4.6. As seen the contours show no sign of spatial oscillations and smooth
everywhere. These �gures are in qualitative agreement with the available numerical solu-
tion [17].
Figure 11 shows the �uid height variation at right and left walls with time. As seen the

�rst peak at the right wall is reached around a time t=2:3 and at left wall it reached
at 6.9.
Figure 12 shows the comparison of maximum height reached D against the experimental

data of Maxworthy [40]. As seen the agreement between the numerical and experimental
data is quite good upto H =0:4. Beyond 0.4 the accuracy deteriorates. This is one of the
limitations of employing mesh smoothing and keeping the same number of elements through
out the calculation. An appropriate mesh regeneration algorithm may increase the accuracy
further, however, at the expense of additional computational cost.
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Figure 12. Solitary wave propagation. Comparison of wave heights with experimental data [40].

6. CONCLUDING REMARKS

In this note we have described the use of the CBS scheme for the solution of incompressible
free surface �ows in the arbitrary Lagrangian Eulerian (ALE) framework. The ALE method
described was based on a simple mesh smoothing approach, which may not be a perfect option
for larger wave amplitudes. For solving breaking wave problems recently published meshless
�nite element method of Idelsohn et al. [41–43] and the Smooth Particle Hydrodynamics
(SPH) method [44] should be consulted.
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